Answer:
The activation energy for this reaction, Ea = 159.98 kJ/mol
Explanation:
Using the Arrhenius equation as:

Where, Ea is the activation energy.
R is the gas constant having value 8.314 J/K.mol
K₂ and K₁ are the rate constants
T₂ and T₁ are the temperature values in kelvin.
Given:
K₂ = 8.66×10⁻⁷ s⁻¹ , T₂ = 425 K
K₁ = 3.61×10⁻¹⁵ s⁻¹ , T₁ = 298 K
Applying in the equation as:

Solving for Ea as:
Ea = 159982.23 J /mol
1 J/mol = 10⁻³ kJ/mol
Ea = 159.98 kJ/mol
Explanation:
Calculating acceleration is complicated if both speed and direction are changing or if you want to know acceleration at any given instant in time. However, it’s relatively easy to calculate average acceleration over a period of time when only speed is changing. Then acceleration is the change in velocity (represented by Δv) divided by the change in time (represented by Δt):
acceleration=ΔvΔt
Using a=f/m u get 100 bc 5/.05 =100m/s
Answer:
Explanation:
The troposphere is hotter near the Earth's surface because heat from the Earth warms this air. ... Mesosphere: As the altitude increases, the air temperature decreases. The Mesosphere, like the troposphere layer, has a decrease in temperature with altitude because of the decreases in the density of the air molecules.