The ground is very large an small amount of electric charge wont affect it
The electric force on the electron is opposite in direction to the electric field E. E points in the -y direction, so the electric force will point in the +y direction. The magnitude of the electric force is given by:
F = Eq
F = electric force, E = electric field strength, q = electron charge
We need to set up a magnetic field such that the magnetic force on the electron balances out the electric force. Since the electric force points in the +y direction, we need the magnetic force to point in the -y direction. Using the reversed right hand rule, the magnetic field must point in the -z direction for this to happen. Since the direction is perpendicular to the +x direction of the electron's velocity, the magnetic force is given by:
F = qvB
F = magnetic force, q = charge, v = velocity, B = magnetic field strength
The electric force must equal the magnetic force.
Eq = qvB
Do some algebra to isolate B:
E = vB
B = E/v
Let's solve for the electron's velocity. Its kinetic energy is given by:
KE = 0.5mv²
KE = kinetic energy, m = mass, v = velocity
Given values:
KE = 2.9keV = 4.6×10⁻¹⁶J
m = 9.1×10⁻³¹kg
Plug in and solve for v:
4.6×10⁻¹⁶ = 0.5(9.1×10⁻³¹)v²
v = 3.2×10⁷m/s
B = E/v
Given values:
E = 7500V/m
v = 3.2×10⁷m/s
Plug in and solve for B:
B = 7500/3.2×10⁷
B = 0.00023T
B = 0.23mT
The way that scientists ensure that data is reliable Clear Explanation
Static electricity<span> is a </span>buildup<span> of </span>electric<span> charges on objects. Charges </span>build up<span> when negative </span>electrons<span> are transferred from one object to another. The object that gives </span>up electrons<span> becomes positively charged, and the object that accepts the </span>electrons<span> becomes negatively charged. This can </span>happen<span> in several ways</span>