To solve this question we will use ideal gas equation:

Where:
p = pressure
V = volume
n = number of moles
R = gas constant
T = temperature
We can rearrange formula to get:

We are working woth same gas so we can write following formula. Index 1 stands for conditions before change and index 2 stands for conditions after change.

We are given:
p1=92.1kPa = 92100Pa
V1=200mL = 0.2L
T1=275K
p2= 101325Pa
T2=273K
V2=?
We start by rearranging formula for V2. After that we can insert numbers:
Answer:
Option D - 0.2 s
Explanation:
We are given;
Initial velocity; u = 7 m/s
Height of table; h = 1.8m
Now,since we want to find the time the car spent in the air, we will simply use one of Newton's equation of motion.
Thus;
h = ut + ½gt²
Plugging in the relevant values, we have;
1.8 = 7t + ½(9.8)t²
4.9t² + 7t - 1.8 = 0
Using quadratic formula to find the roots of the equation gives us;
t = -1.65 or 0.22
We can't have negative t value, thus we will pick the positive one.
So, t = 0.22 s
This is approximately 0.2 s
Answer:
The work done in winding the spring gets stored in the wound up spring in the form of elastic potential energy (i.e potential energy due to change in shape). ... During this process, the potential energy stored in it gets converted to kinetic energy. This turns the wheels of the toy car.
Explanation:
Answer:
v = 60 m/s
Explanation:
It is given that,
A wave is represented by the equation :
![y=0.2\sin [0.4\pi (x-60)t]](https://tex.z-dn.net/?f=y%3D0.2%5Csin%20%5B0.4%5Cpi%20%28x-60%29t%5D)
We need to find the velocity of the wave
The general equation of a wave is given by :
....(1)
Equation (1) can be written as :
...(2)
If we compare equation (1) and (2) we get :


The velocity of a wave is given by :

So, the velocity of the wave is 60 m/s.
Answer:
Explanation: The planet average distance = 42300km
Kepler's 3rd Law also known as the Harmonic Law states that;
for each planet orbitting the sun, its side real period squared divided by the cube of the semi-major axis of the orbit is a constant.
A planet, mass m, orbits the sun, mass M, in a circle of radius r and a period t. The net force on the planet is a centripetal force, and is caused the force of gravity between the sun and the planet.
Please find the attached file for the solution