Neither the speed nor the distance of a falling object is linearly related to time.
Answer:
(a) 2.34 s
(b) 6.71 m
(c) 38.35 m
(d) 20 m/s
Explanation:
u = 20 m/s, theta = 35 degree
(a) The formula for the time of flight is given by


T = 2.34 second
(b) The formula for the maximum height is given by


H = 6.71 m
(c) The formula for the range is given by


R = 38.35 m
(d) It hits with the same speed at the initial speed.
Answer:
230.26 N
Explanation:
Since the speed is constant, acceleration is zero hence the net force will be given by the product of mass, coefficient of friction and acceleration due to gravity
F=0.72*32.6*9.81=230.26 N
Answer:
Spiral
i know it is so dont say nun people
Explanation:
Ok so here is the thing. It is necessary to introduce the atomic number Z into the following equation and the reason for that is that we are not working here with hydrogen (H). It will go like this:
<span>E=(2.18×10^-18 J)(Z^2 )|1/(ni^2 )-1/(nf^2 )| </span>
<span>E=(2.18×10^-18 J)(2^2 )|1/(6 ^2 )-1/(4 ^2 )|=3.02798×10^-19 J </span>
<span>After that we need to plug the E value calculated into the equation. Remember that the wavelength is always positive:</span>
<span>E=hc/λ 3.02798×10^-19 J=hc/λ λ=6.56×10^-7 m </span>
so 6.56×10^-7 m or better written 656 nm is in the visible spectrum