Exothermic change. Because the firework when it exploded, released energy in the form of light. In exothermic changes energy is released, and in endothermic changes energy is absorbed.
- This wouldn't be a physical change, but instead a chemical change. A clue that it is a chemical change is that energy was given off.
Here we have to get the spin of the other electron present in a orbital which already have an electron which has clockwise spin.
The electron will have anti-clockwise notation.
We know from the Pauli exclusion principle, no two electrons in an atom can have all the four quantum numbers i.e. principal quantum number (n), azimuthal quantum number (l), magnetic quantum number (m) and spin quantum number (s) same. The importance of the principle also restrict the possible number of electrons may be present in a particular orbital.
Let assume for an 1s orbital the possible values of four quantum numbers are n = 1, l = 0, m = 0 and s = .
The exclusion principle at once tells us that there may be only two unique sets of these quantum numbers:
1, 0, 0, + and 1, 0, 0, -.
Thus if one electron in an orbital has clockwise spin the other electron will must be have anti-clockwise spin.
Answer:
This question is incomplete
Explanation:
This question is incomplete, however, the element that has 52 electrons only is Tellurium (Te) and when the electronic configuration of elements with more than 52 electrons are written, the 52nd electron is indicated/paired the same way the 52nd electron of Te is indicated/paired. Hence, while writing the electronic configuration of Te, it is written as
[Kr] 4d¹⁰ 5s² 5p⁴ where [Kr] is the electronic configuration of krypton. Based on this, we can deduce that the 52nd electron will be in the first orbital of the P subshell (as attached in the picture). This is because when indicating the electrons in the subshell, one electron will be spread across each orbital and if any electron is still remaining, it will be added starting from to the first orbital of the subshell, however no two electrons in an orbital in a subshell can have the same spin and hence must face opposite direction based on pauli's exclusion principle (as seen in attached); thus for the 5p-orbital of elements with 52 or more electrons, when one electron each is represented in each box (3 boxes in total) in the 5p-orbital, the remaining electron is paired with the the first electron in the first box of the 5p-orbital
Answer:
1: marine
2:rainforest
Temperate deciduous forest
taiga
tundra
desert
Explanation: