Answer:
A balanced equation is an equation for a chemical reaction in which the number of atoms for each element in the reaction and the total charge is the same for both the reactants and the products. In other words, the mass and the charge are balanced on both sides of the reaction.
Explanation:
The correct answer is 12.044 × 10²³ molecules.
The molecular mass of H₂S is 34 gram per mole.
Number of moles is determined by using the formula,
Number of moles = mass/molecular mass
Given mass is 68 grams, so no of moles will be,
68/34 = 2 moles
1 mole comprises 6.022 × 10²³ molecules, therefore, 2 moles will comprise = 6.022 × 10²³ × 2
= 12.044 × 10²³ molecules.
For an element whose third shell contains six electrons, the appropriate electron configuration is; 1s2 2s2 2p6 3s2 3p4.
The electron configuration shows the distribution of electrons in the shells of an atom and in orbitals.
We have been told that the six electrons are found in the third shell. This shell has n=3 and the configuration of this shell must ns2 np4.
The only electron configuration that meets this standard is 1s2 2s2 2p6 3s2 3p4.
Learn more: brainly.com/question/18704022
Acids are donors of protons (H+) and bases are acceptors of protons.
For example:
1) hydrochloric acid (HCl) in reaction with water give one proton to water and become chloride anion (Cl-).
2) ammonia (NH3) Is base, in reaction with water accepts one protone and become ammonium cation (NH4+).
Molarity = moles of solute(HCl)
------------------------------------
volume of the solution
= 1
------
5
= 0.2M.
Hence option B is correct.
Hope this helps!!