Answer:
Fourteen hydrogen atoms are bounded in total to the carbon atoms in the structure
Explanation:
The boxes that show "one" indicate that there is only one hydrogen atom bonded to that particular carbon atom while those that show "zero" shows there are no hydrogen atoms bonded to that particular carbon atom. Those that show "three" indicate that there are three hydrogen atoms bonded to that particular carbon.
There are 10 carbon atoms in the structure.
NOTE that each of these carbon atoms must be surrounded with four bonds; which was how the number of hydrogen atoms (numbers in the boxes) weree determined.
As the temperature of a gas increases, the average kinetic energy of the gas particles increases and the average speed of a gas particle increases.
According to the kinetic theory of gases, all gases are made of microscopic molecules that move in straight lines until they bump into another gas molecule or object. This transfer of energy causes molecules to move around faster and bump into each other more.
Kinetic energy is proportional to the speed of the molecules. As the speed of the colliding molecules increases, so does the total kinetic energy of all the gas molecules. It's pretty difficult to measure the speed of an individual gas molecule.
Instead, temperature can be used as a measure of the average kinetic energy of all the molecules in the gas. As the gas molecules gain energy and move faster, the temperature goes up. This is why Amy feels warmer!
To determine the average kinetic energy of gas molecules, we need to know the temperature of the gas, the universal gas constant (R), and Avogadro's number (NA).
Learn more about kinetic theory of gases here : brainly.com/question/11067389
#SPJ4
Using the specific heat capacity formula:
q = mc ∆ t
60.0 J = (6g)(x)(11*C)
x = 0.9 J/g*C
Aluminum
These animals are all invertebrates
Answer:
46.40 g.
Explanation:
- It is a stichiometric problem.
- The balanced equation of the reaction: 4K + O₂ → 2K₂O.
- It is clear that 4.0 moles of K reacts with 1.0 mole of oxygen produces 2.0 moles of K₂O.
- We should convert the mass of K (38.5 g) into moles using the relation:
<em>n = mass / molar mass,</em>
n = (38.5 g) / (39.098 g/mol) = 0.985 mole.
<em>Using cross multiplication:</em>
4.0 moles of K produces → 2.0 moles of K₂O, from the stichiometry.
0.985 mole of K produces → ??? moles of K₂O.
∴ The number of moles of K₂O produced = (0.985 mole) (2.0 mole) / (4.0 mole) = 0.4925 mole ≅ 0.5 mole.
- Now, we can get the mass of K₂O:
∴ mass = n x molar mass = (0.5 mole) (94.2 g/mol) = 46.40 g.