Answer:
Explanation:
a )
initial velocity u = 45 m/s
acceleration a = - 5 m/s²
final velocity v = 0
v = u - at
0 = 45 - 5 t
t = 9 s
b )
s = ut - 1/2 at²
= 45 x 9 - .5 x5x 9²
405 - 202.5
202.5 m
2 )
a )
s = ut + 1/2 a t²
u = 0
s = 1/2 at²
= .5 x 9.54 x 6.5²
= 201.5 m
b )
v = u + at
= 0 + 9.54 x 6.5
= 62.01 m / s
3
a )
acceleration = (v - u) / t
= (34 - 42) / 2.4
= - 3.33 m /s²
b )
v² = u² - 2 a s
34² = 42² - 2 x 3.33² s
s = 27.41 m
c )
Average velocity
Total displacement / time
= 27.41 / 2.4
= 11.42 m /s
4 )
a )
v = u + at
v = 0 + 3 x 4
= 12 m /s
b )
s = ut + 1/2 a t²
= o + .5 x 3 x 4²
= 24 m
Answer:
Explanation:
<h3>for average velocity we use this formula V Vavg =V1+V2<u>
<em>÷</em></u>
<u>2</u></h3>
Answer:
The entropy change of the sample of water = 6.059 x 10³ J/K.mol
Explanation:
Entropy: Entropy can be defined as the measure of the degree of disorder or randomness of a substance. The S.I unit of Entropy is J/K.mol
Mathematically, entropy is expressed as
ΔS = ΔH/T....................... Equation 1
Where ΔH = heat absorbed or evolved, T = absolute temperature.
<em>Given: If 1 mole of water = 0.0018 kg,</em>
<em>ΔH = latent heat × mass = 2.26 x 10⁶ × 1 = 2.26x 10⁶ J.</em>
<em>T = 100 °C = (100+273) K = 373 K.</em>
<em>Substituting these values into equation 1,</em>
<em>ΔS =2.26x 10⁶/373</em>
ΔS = 6.059 x 10³ J/K.mol
Therefore the entropy change of the sample of water = 6.059 x 10³ J/K.mol
<span>When reading a buret, the initial reading should be taken from the top of the glassware and the final volume should still taken at the top. If the buret is completely, the initial volume for most buret would be zero. though, there are some where their initial starts at 50 decreasing to zero.</span>
Answer:
a toy car speed is about 2.5 to 3.5 mph