T=(60cos78, 60sin78)
T=(12.47, 58.69)
C=45
d=√((45-12.47)^2+58.69^2)
d≈67.1km
Given:
1 set requires 4 couples 8 dancers.
Total number of people at a square dance = 250.
To find:
The greatest number of sets possible at the dance.
Solution:
We have,
Total people = 250
1 set = 8 people.



Number of possible sets cannot be a decimal or fraction value. So, approx. the value to the preceding integer.

Therefore, the number of possible sets at the dance is 31.
Answer:
About 24.4
Step-by-step explanation:
sin^2 x + 4 sinx +3 3 + sinx
-------------------------- = -------------------
cos^2 x 1 - sinx
factor the numerator
(sinx +3) (sinx+1) 3 + sinx
-------------------------- = -------------------
cos^2 x 1 - sinx
cos^2 = 1-sin^2x
(sinx +3) (sinx+1) 3 + sinx
-------------------------- = -------------------
1- sin^2x 1 - sinx
factor the denominator
(sinx +3) (sinx+1) 3 + sinx
-------------------------- = -------------------
(1-sinx ) (1+sinx) 1 - sinx
cancel the common term (1+sinx) and (sinx +1)
(sinx +3) 3 + sinx
-------------------------- = -------------------
(1-sinx ) 1 - sinx
reorder the first term
3+sinx 3 + sinx
-------------------------- = -------------------
(1-sinx ) 1 - sinx
Hello! I would love to help!
The answer is -10,-1
Basically, you have to fill -10 in for x and -1 in for y in each equation. If the equations are true, that is the right answer!
Hope this helped! Comment if you have questions!