Answer:
Step-by-step explanation:
(1) 2x - 6y = -12
(2) x + 2y = 14
There is a -6y and a +2y. Since they have opposite signs, I'll try to eliminate the y terms. (That's my choice. There is more than one way to solve these.)
Multiply eq. (2) by 3:
3x + 6y = 42
Then add the result to eq. (1) to eliminate the y terms:
2x - 6y = -12
3x + 6y = 42
------------------
5x = 30, so x = 6
Now plug the value of x into eq. (2) and solve for y:
6 + 2y = 14
2y = 8
y = 4
Why did I use eq. (2) to solve for y? Because it's less work. I could have used eq. (1) instead:
2(6) - 6y = -12
12 - 6y = -12
-6y = -24
y = 4
More than one way to solve.
Answer:
The function which represents this sequence will be:

Hence, option (A) is true.
Step-by-step explanation:
Given the sequence

An arithmetic sequence has a constant difference 'd' and is defined by

computing the differences of all the adjacent terms

As the difference is the same, so

as

Thus, substituting
,
in the nth term of an arithmetic sequence



Therefore, the function which represents this sequence will be:

Hence, option (A) is true.
<span>y = 5(12) - 3(4) + 8
y = 60 - 12 + 8
y= 56</span>
Answer:
(x – h)2 + (y – k)2 = r2
Step-by-step explanation:
If the center of the circle were moved from the origin to the point (h, k) and point P at (x, y) remains on the edge of the circle the equation of the new circle
(x – h)2 + (y – k)2 = r2