Answer:
Boron and Aluminum
Explanation:
If you write the electron configuration for boron and aluminum, you get:
for boron and
for aluminum. Both have 3 valance electrons and has 2 electrons in a s-orbital and 1 in a p-orbital. These valance electron similarities are based on the column/group the elements are. Therefore, Boron and Aluminum have similar chemical behaviours and similar arrangement of outer/valance electrons.
Use the Clausius-Clapeyron equation...
<span>Let T1 be the normal boiling point, which will occur at standard pressure (P1), which is 101.3 kPa (aka 760 torr or 1.00 atm). You know the vapour pressure (P2) at a different temperature (T2). And you are given the enthalpy of vaporization. Therefore, we can use the Clausius-Clapeyron equation.
</span>
![ln(P_1/P_2) = \frac{-\delta H_{vap}}{R} \times [\frac{1}{T_1} - \frac{1}{T_2}]](https://tex.z-dn.net/?f=ln%28P_1%2FP_2%29%20%3D%20%5Cfrac%7B-%5Cdelta%20H_%7Bvap%7D%7D%7BR%7D%20%20%5Ctimes%20%5B%5Cfrac%7B1%7D%7BT_1%7D%20-%20%5Cfrac%7B1%7D%7BT_2%7D%5D)
<span>
</span><span>ln(101.3 kPa / 52.7 kPa) = (-29.82 kJ/mol / 8.314x10^{-3} kJ/molK) (1/T - 1/329 K)
</span>
------ some algebra goes here -----
<span>T = 349.99K ...... or ...... 76.8C </span>
Atoms that share electrons in a chemical bond have covalent bonds. An oxygen molecule (O2) is a good example of a molecule with a covalent bond. Ionic bonds occur when electrons are donated from one atom to another.