Answer:
435.38 L
Explanation:
From the question given above, the following data were obtained:
Initial mole (n₁) = 3.25 mole
Initial volume (V₁) = 100 L
Final mole (n₂) = 14.15 mole
Final volume (V₂) =?
The final volume occupied by the gas can be obtained as follow:
V₁/n₁ = V₂/n₂
100 / 3.25 = V₂ / 14.15
Cross multiply
3.25 × V₂ = 100 × 14.15
3.25 × V₂ = 1415
Divide both side by 3.25
V₂ = 1415 / 3.25
V₂ = 435.38 L
Thus, the final volume of the gas is 435.38 L
Answer:
Fe₂O₃
Explanation:
To solve this question we must find the moles of Iron in 1.68g. With the difference of the masses we can find the moles of oxygen. The formula will be obtained with the ratio of both amount of moles:
<em>Moles Fe:</em>
1.68g * (1mol / 56g) =0.03moles
<em>Moles O:</em>
2.40g-1.68g = 0.72g * (1mol/16g) = 0.045moles
The ratio O/Fe is:
0.045moles / 0.03moles = 1.5 moles. this ratio is obtained if the formula is:
<h3>Fe₂O₃</h3>
Answer:
uranium is classifide as actinide a chemical element atomic number 92 and is a solid at room temperature
Are produced 72 grams of water in this reaction.
<h3>Mole calculation</h3>
To find the value of moles of a product from the number of moles of a reactant, it is necessary to observe the stoichiometric ratio between them:

Analyzing the reaction, it is possible to see that the stoichiometric ratio is 1:2, so we can perform the following expression:



So, if there are 2 mols of Ca(OH)2:
Ca(OH)2 | H2O


Finally, just find the number of grams of water using your molar mass:


So, 72 grams are produced of water in this reaction.
Learn more about mole calculation in: brainly.com/question/2845237
Kinetic Energy Statement
Kinetic energy is energy that a body possess as a result of its motion. Kinetic energy as it is mathematically written is the "classic statement" of: Kinetic energy is equal to half the mass of an object times its velocity squared.
There are five types of kinetic energy: radiant, thermal, sound, electrical and mechanical. Let us look at some of the kinetic energy examples and learn more about the different types of kinetic energy.
Hope this helped!
❤️