Answer:
Bohr's model
Explanation:
Rutherford's experimental evidence best supports the Bohr's model. Recall that in the Bohr's model, the Rutherford model was regarded as a fundamental stepping stone.
Experimental evidence from the Bohr's model shows that the atom is not a sphere of positive charges in which negative charges were embedded. It would have been impossible for Neils Bohr to build the quantum theory from such a model.
Hence, the nuclear theory of Rutherford provided a fundamental stepping stone and experimental backup for the Bohr's model of the atom.
All other models mentioned in task 1 (Dalton, Thompson and Bohr) all mention the fact that the atom is made of particles. Thompson effectively described the particles as negative and positive in nature. Bohr took the idea further by proposing that the negative particles (electrons) were actually found in energy levels that are quantized.
Answer:
well it might be 1.)Cadmium Fluoride CdF2 150.4078
2.)Cadmium(II) Perfluorate Cd(FO4) 2278.403
3.)Cadmium Ferrocyanide Cd2Fe(CN) 6436.7714
Explanation:
Answer:
6.48L
Explanation:
Given parameters:
V₁ = 2.5L
P₁ = 105 kPa
P₂ = 40.5 kPa
Condition: constant temperature
Unknown:
V₂ = ?
Solution:
To solve this problem, we are considering pressure and volume relationship. This should be solved by applying the knowledge of Boyle's law.
The law states that "The volume of fixed mass of a gas varies inversely as the pressure changes if the temperature is constant".
Mathematically;
P₁V₁ = P₂V₂
where P and V are pressure and volume, 1 and 2 represents initial and final states.
Substitute to find the V₂;
105 x 2.5 = 40.5 x V₂
Solving for V₂ gives 6.48L
The answer is (E). protons.
The atomic number of an atom is equal to the number of protons in the nucleus.
I hope this helped.