The electron configuration that belongs to the atom with the lowest first ionization energy is francium.
<h3>What is ionization energy? </h3>
Ionization energy is defined as the minimum amount of energy required to remove the most loosely electron present in outermost shell.
<h3>Ionization energy across period</h3>
Ionization energy increase as we move from left to right in the period. This can be explained as when we move from left to right along period new electron is added to the same shell which increase the nuclear charge. Hence results int he decrease in size. Due to this decrease in size more energy is required to remove electron from outermost shell.
<h3>Ionization energy along group</h3>
Ionization energy decrease as we move from top to bottom along group. This can be explained as we move from top to bottom new electron is added to new shell. Due to addition of new shell the size of atom increases which results in the decrease in the nuclear charge. Due to this less amount of energy is needed to remove an electron.
Thus, we concluded that the electron configuration that belongs to the atom with the lowest first ionization energy is francium.
learn more about ionization energy:
brainly.com/question/1602374
#SPJ4
Answer: 9.3 x 10^ 18 g CO
Explanation:
Start by knowing that carbon monoxide is the compound CO. To convert molecules to grams, you first need to convert molecules to moles. This can be done using the conversion factor for Avogadro's Number:
(2.0 x 10^5 molecules CO) x 1 mol CO / 6.02 x 10^23 molecules CO
This cancels molecules CO.
Then, you can convert moles to grams, which is your desired quantity. You can find the number of grams for CO by looking at the periodic table and adding together their masses. C = 12 g and O = 16 g. Total of 28 g CO:
(1 mol CO) x 28 g CO / 1 mol CO
This cancels mol CO, which leaves grams CO.
The answer you need is Volume.
Answer:
a process that involves rearrangement of the molecular or ionic structure of a substance, as opposed to a change in physical form or a nuclear reaction
Answer:
900 K
Explanation:
Recall the ideal gas law:

Because only pressure and temperature is changing, we can rearrange the equation as follows:

The right-hand side stays constant. Therefore:

The can explodes at a pressure of 90 atm. The current temperature and pressure is 300 K and 30 atm, respectively.
Substitute and solve for <em>T</em>₂:

Hence, the temperature must be reach 900 K.