Out of the following given choice:
A. The increase in
the airspace occupied by vinegar molecules
B. The chemical reaction with nerves, which is slower than
other sensory processes
C. Attractive forces between the air and vinegar molecules
D. Random collisions between the air and vinegar molecules.
<span>The answer is
D. While the particles may be
moving at high velocities even at room
temperatures, the delay is due to the numerous collisions
between the vinegar molecules and the air molecules.This changes the vinegar’s
molecules directions from straight lines to random unpredictable paths</span>
Answer: The heat required is 6.88 kJ.
Explanation:
The conversions involved in this process are :
Now we have to calculate the enthalpy change.
where,
= enthalpy change = ?
m = mass of ethanol = 25.0 g
= specific heat of solid ethanol= 0.97 J/gK
= specific heat of liquid ethanol = 2.31 J/gK
n = number of moles of ethanol =
= enthalpy change for fusion = 5.02 KJ/mole = 5020 J/mole
= change in temperature
The value of change in temperature always same in Kelvin and degree Celsius.
Now put all the given values in the above expression, we get
(1 KJ = 1000 J)
Therefore, the heat required is 6.88 kJ
The intermolecular forces that are responsible for the dissolution of Ethylene glycol in water is hydrogen bonding dipole-dipole forces and dispersion forces.
Both ethylene glycol and water contains the pair of hydrogen and oxygen.
The hydrogen of one atom create a bond with the oxygen of other atom this results in the formation of intra molecular hydrogen bonding.
The electron are non uniformly distributed over the molecule or the atom which results in the fluctuation of the electron density in the atom.
So it creates are dispersion forces which is present all over the molecule this forces helps to increase the strength of the bond formed between the ethylene glycol and water because they have large masses.
Both ethylene glycol and water are polar molecules because of being polar they form dipole and the dipole of both the molecules interact with each other in order to form bond between the atoms which eventually results in the formation dissolution of ethylene glycol in water.
To know more about intermolecular forces, visit,
brainly.com/question/2193457
#SPJ4
Compete Question - which intermolecular forces are responsible for the dissolution of ethylene glycol? select all that apply hydrogen bonding, dipole-dipole, dispersion and Ion dipole interaction.
Answer: Hydrogen ion concentration of the lake is
Explanation:
pH or pOH is the measure of acidity or alkalinity of a solution.
pH is calculated by taking negative logarithm of hydrogen ion concentration. Acids have pH ranging from 1 to 6.9 and bases have pH ranging from 7.1 to 14.
To calculate the pH of the solution, we use the equation:
We are given:
pH = 4.0
Putting values in above equation, we get:
Thus hydrogen ion concentration of the lake is
Answer:
0.09 moles of Br₂
Explanation:
Bromine liquid it refers at Br₂ molecule which is liquid at room temperature.
Now to calculate the number of moles we use the following formula:
number of moles = mass (g) / molecular mass (g/mol)
For Br₂ molecule we have:
number of moles = 14.4 / 160 = 0.09 moles of Br₂