Answer:
The strength of the electric field is .
Explanation:
Given that,
Speed
Time
Angle = 45°
We need to calculate the acceleration
Using equation of motion
We need to calculate the strength of the electric field
Using relation of newton's second law and electric force
Put the value into the formula
Hence, The strength of the electric field is .
The formula for momentum is mass times velocity. Simply, we just multiply the given values:
p = mv
p = 40 kg x 4 m/s
p = 160 kg m/s
Other units for momentum is N s.
p = 160 N s
Complete Question:
A 10 kg block is pulled across a horizontal surface by a rope that is oriented at 60° relative to the horizontal surface.
The tension in the rope is constant and equal to 40 N as the block is pulled. What is the instantaneous power (in W) supplied by the tension in the rope if the block when the block is 5 m away from its starting point? The coefficient of kinetic friction between the block and the floor is 0.2 and you may assume that the block starting at rest.
Answer:
Power = 54.07 W
Explanation:
Mass of the block = 10 kg
Angle made with the horizontal, θ = 60°
Distance covered, d = 5 m
Tension in the rope, T = 40 N
Coefficient of kinetic friction,
Let the Normal reaction = N
The weight of the block acting downwards = mg
The vertical resolution of the 40 N force,
Power,
Answer:
The most common oxidation numbers for a given element
Given parameters:
Initial velocity of Coin = 0m/s
Time taken before coin hits ground = 5.7s
Unknown:
Final velocity of the coin = ?
Velocity is displacement with time. To solve this problem, we have to apply one of the equations of motion.
The fitting one of them here is shown below;
V = U + gt
where;
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
t is the time taken
Here we use positive value of acceleration due to gravity because the coin is falling with the effect of acceleration and not against it.
Now input the parameters and solve;
V = 0 + 9.81 x 5.7
V = 55.917m/s
Therefore, the final velocity is 55.917m/s.