Answer:
a)Distance traveled during the first second = 4.905 m.
b)Final velocity at which the object hits the ground = 38.36 m/s
c)Distance traveled during the last second of motion before hitting the ground = 33.45 m
Explanation:
a) We have equation of motion
S = ut + 0.5at²
Here u = 0, and a = g
S = 0.5gt²
Distance traveled during the first second ( t =1 )
S = 0.5 x 9.81 x 1² = 4.905 m
Distance traveled during the first second = 4.905 m.
b) We have equation of motion
v² = u² + 2as
Here u = 0, s= 75 m and a = g
v² = 0² + 2 x g x 75 = 150 x 9.81
v = 38.36 m/s
Final velocity at which the object hits the ground = 38.36 m/s
c) We have S = 0.5gt²
75 = 0.5 x 9.81 x t²
t = 3.91 s
We need to find distance traveled last second
That is
S = 0.5 x 9.81 x 3.91² - 0.5 x 9.81 x 2.91² = 33.45 m
Distance traveled during the last second of motion before hitting the ground = 33.45 m
Answer:
θ= 5 radian
Explanation:
Given data:
Radius r = 0.70 m
Initial angular speed ω_i = 2rev/s
Time t = 5 s
Final angular speed ω_f =0
so we have angular displacement

putting values
= 5 rad
All metals except potassium and sodium, have a property known as malleability. Malleability is the quality of something that can be shaped into something else without breaking. So when aluminium and copper are hammered they will not break. Rather they will change shape and become thin or flat at the area where its hammered.
All Non- metals except diamond are brittle in nature, so when we hammer it , they will break down into pieces. So when ice and glass will be hammered they will shatter into pieces.
Answer:
Yes the body will receive a dangerous shock in both cases.
Explanation:
Different parts of the body has different resistance. skin has the high resistance as compared to other organs of the body.
Dry skin has high resistance than wet skin this is because water is relatively good conductor of electricity, it adds parallel path to the current flow and hence reduces skin resistance.
Dry hands body has approximately 500 kΩ resistance and if 120 V electricity supply current received will be:
I = V/R= 120/ 500*10^3
I= 0.24 mA
Even the current seems is much lower than the safe zone but this is the case in case of DC voltage in case of AC voltage the body will receive a shock this is because the skin pass more current when the voltage is changing i.e. AC.
Similarly for wet hands body resistance is 1 kΩ. so the current through the body seems to be:
I = 120 / 1000
I = 12 mA
The current is higher than safe zone so the body will receive a dangerous shock.
You draw a straight line from the start point to the end point. It doesn't matter what route was actually followed for the trip.