Answer:
Planets that are farther from the sun than the earth (all but Mercury and Venus) will exhibit retrograde motion.
If the position of the planet is observed relative to the background stars, the planet will appear to move backward relative to the stars when the earth is moving in an Eastward direction faster than the planet, and the planet appears to move backwards relative to the stars
(The planet will be on the side of the earth that is opposite that of the sun)
<span>A van is traveling on a road at a speed of 55 km/h relative to a
stationary observer on the side of the road. A girl sitting near the
driver of the van throws a paper airplane to a boy at the back of the
van with a speed of 2 km/h relative to the girl, the boy, and the van.
The speed of the paper airplane, relative to the same stationary observer
on the side of the road, is (55 - 2) = 53 km/h. No rounding is necessary.</span>
Answer:
There is an arrow up for air resistance and an arrow down for gravity. The arrow up is longer than the arrow down.
Explanation:
The text of the problem says that the skydiver is slowing down: this means that he has an acceleration, which is directed opposite to the motion of the skydiver. Since the motion is downward, the acceleration must be upward.
There are two forces acting on the skydiver: the gravity (downward) and the air resistance (upward). According to Newton's second law:
F=ma
the acceleration has the same direction of the net force, so the net force must also be upward: therefore, the air resistance must be greater than the gravity, so the arrow up for air resistance is longer than the arrow down for gravity.