Answer:
(a) 4.21 m/s
(b) 24.9 N
Explanation:
(a) Draw a free body diagram of the object when it is at the bottom of the circle. There are two forces on the object: tension force T pulling up and weight force mg pulling down.
Sum the forces in the radial (+y) direction:
∑F = ma
T − mg = m v² / r
v = √(r (T − mg) / m)
v = √(0.676 m (54.7 N − 1.52 kg × 9.8 m/s²) / 1.52 kg)
v = 4.21 m/s
(b) Draw a free body diagram of the object when it is at the top of the circle. There are two forces on the object: tension force T pulling down and weight force mg pulling down.
Sum the forces in the radial (-y) direction:
∑F = ma
T + mg = m v² / r
T = m v² / r − mg
T = (1.52 kg) (4.21 m/s)² / (0.676 m) − (1.52 kg) (9.8 m/s²)
T = 24.9 N
Answer:
4.384 * 10^13
Explanation:
Given the expression :
[(6.67 * 10^-11) * (1.99 * 10^30)] ÷ [(1.74*10^3)*(1.74*10^3)]
Applying the laws of indices
[(6.67 * 1.99) *10^(-11 + 30)] ÷ [(1.74 * 1.74) * 10^3+3]
13.2733 * 10^19 ÷ 3.0276 * 10^6
(13.2733 / 3.0276) * 10^(19 - 6)
4.3840996 * 10^13
= 4.384 * 10^13