Answer : The equilibrium concentration of
will be, (C) 
Explanation : Given,
Equilibrium constant = 14.5
Concentration of
at equilibrium = 0.15 M
Concentration of
at equilibrium = 0.36 M
The balanced equilibrium reaction is,

The expression of equilibrium constant for the reaction will be:
![K_c=\frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)
Now put all the values in this expression, we get:
![14.5=\frac{[CH_3OH]}{(0.15)\times (0.36)^2}](https://tex.z-dn.net/?f=14.5%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%280.15%29%5Ctimes%20%280.36%29%5E2%7D)
![[CH_3OH]=2.82\times 10^{-1}M](https://tex.z-dn.net/?f=%5BCH_3OH%5D%3D2.82%5Ctimes%2010%5E%7B-1%7DM)
Therefore, the equilibrium concentration of
will be, (C) 
Answer:
D
Explanation:
It is higher in the air, so it will fall faster then the other apples.
I guess the answer <span>can be an alkali metal, alkaline earth metal, or transition metals.
Hope this helps :)
</span>
Answer : The mass of
occupy 30.3 L under the same conditions will be, 24.9 grams.
Explanation :
First we have to calculate the moles of 

Now we have to calculate the moles of
in 30.3 L by using Avogadro's law.
Avogadro's law : It is defined as the volume of gas is directly proportional to the number of moles of gas at constant pressure and temperature.

or,

where,
= initial volume of gas = 6.21 L
= final volume of gas = 30.3 L
= initial moles of gas = 0.16 mol
= final temperature of gas = ?
Now put all the given values in the above equation, we get:


Now we have to calculate the mass of 

Molar mass of
= 32 g/mol

Therefore, the mass of
occupy 30.3 L under the same conditions will be, 24.9 grams.
Answer:
They combine as atoms, and separate as ions. When sodium and chlorine atoms come together to form sodium chloride (NaCl), they transfer an electron. The sodium (Na) atom transfers one electron to the chlorine (Cl) atom, so that they both have full outer shells.
Explanation:
Have a Good DAy
Brainliest please