Answer:
Mass of heptane = 102g
Vapor pressure of heptane = 454mmHg
Molar mass of heptane = 100.21
No of mole of heptane = mass/molar mass = 102/100.21
No of mole of heptane = 1.0179
Therefore the partial pressure of heptane = no of mole heptane *Vapor pressure of heptane
Partial pressure of heptane = 1.0179*454mmHg
Partial pressure of heptane = 462.1096 = 462mmHg
the partial pressure of heptane vapor above this solution = 462mmHg
Solar winds. Plasma particles from the sun affect earth's atmosphere and cause magnetic interferance.
The way you calculate the empirical formula is to firstly assume 100g. To find each elements moles you take each elements percentage listed, times it by one mole and divide it by its atomic mass. (ex: moles of K =55.3g x 1 mole/39.1g, therefore there is 1.41432225 moles of Potassium) Once you’ve completed this for every element you list each elements symbol beside it’s number of moles and divide by the smallest number because it can only go into its self once. After you’ve done this, you’ve found your empirical formula, which is the simplest whole number ratio of atoms in a compound. I’ve added an example of a empirical question I completed last semester :)
Water. All organisms that depend on oxygen need water to live.