A unit of mass used to express atomic and molecular weights, equal to one-twelfth of the mass of an atom of carbon-12. It is equal to approximately 1.66 x 10-27<span> kg.</span>
The collision of the molecules between the hydrogen molecule or H2, and an iodine molecule or I2, provided there would be a sufficient energy is that the system would eventually undergo a chemical change wherein a new chemical compound would be formed from these two molecules.
Explanation:
The number of moles of solute present in liter of solution is defined as molarity.
Mathematically, Molarity = 
Also, when number of moles are equal in a solution then the formula will be as follows.

It is given that
is 8.00 M,
is 7.00 mL, and
is 0.80 M.
Hence, calculate the value of
using above formula as follows.



= 70 ml
Thus, we can conclude that the volume after dilution is 70 ml.
To solve this we assume
that the gas inside the balloon is an ideal gas. Then, we can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 = 308.15 x 7.80 / 698.15
V2 =3.44 L