Answer:
Because space is a void with no air flow
Explanation:
Answer:
Magnetic force, 
Explanation:
Given that,
A beryllium-9 ion has a positive charge that is double the charge of a proton, 
Speed of the ion in the magnetic field, 
Its velocity makes an angle of 61° with the direction of the magnetic field at the ion's location.
The magnitude of the field is 0.220 T.
We need to find the magnitude of the magnetic force on the ion. It is given by :

So, the magnitude of magnetic force on the ion is
.
Motion is detected when an object changes its position with respect to a reference point. Coordinate system is basically used to represent motion. A coordinate system uses numbers or coordinates which represent position of the reference points on a two-dimensional or three-dimensional space. The trajectory of a point or line can be studied on a coordinate system which describes various aspects of motion like velocity, acceleration, distance, displacement etc. Coordinate system is important because it helps to choose a starting point and the direction (which will be positive).
<span>
English "natural philosopher" (the contemporary term for physicist) Michael Faraday is renowned for his discovery of the principles of electro-magnetic induction and electro-magnetic rotation, the interaction between electricity and magnetism that led to the development of the electric motor and generator. The unit of measurement of electrical capacitance - the farad (F) - is named in his honor.
Faraday's experimental work in chemistry, which included the discovery of benzene, also led him to the first documented observation of a material that we now call a semiconductor. While investigating the effect of temperature on "sulphurette of silver" (silver sulfide) in 1833 he found that electrical conductivity increased with increasing temperature. This effect, typical of semiconductors, is the opposite of that measured in metals such as copper, where conductivity decreases as temperature is increased.
In a chapter entitled "On Conducting Power Generally" in his book Experimental Researches in Electricity Faraday writes "I have lately met with an extraordinary case ... which is in direct contrast with the influence of heat upon metallic bodies ... On applying a lamp ... the conducting power rose rapidly with the heat ... On removing the lamp and allowing the heat to fall, the effects were reversed."
We now understand that raising the temperature of most semiconductors increases the density of charge carriers inside them and hence their conductivity. This effect is used to make thermistors - special resistors that exhibit a decrease in electrical resistance (or an increase in conductivity) with an increase in temperature.
<span>
Next Milestone
</span>
Contemporary Documents
<span>
<span>Faraday, M. Experimental Researches in Electricity, Volume 1. (London: Richard and John Edward Taylor, 1839) pp.122-124 (para. 432). Note: This section appears on different pages in later editions of the book. The material in the book is reprinted from articles by Faraday published in the Philosophical Transactions of the Royal Society of 1831-1838. </span>
</span>
More Information
<span>
<span>Hirshfeld, Alan W. The Electric Life of Michael Faraday. Walker & Company (March 7, 2006).</span>
<span>Friedel, Robert D. Lines and Waves: Faraday, Maxwell and 150 Years of Electromagnetism. Center for the History of Electrical Engineering, Institute of Electrical and Electronics Engineers (1981).</span>
</span>
</span>
Answer:
A) The space time coordinate x of the collision in Earth's reference frame is
.
B) The space time coordinate t of the collision in Earth's reference frame is

Explanation:
We are told a rocket travels in the x-direction at speed v=0,70 c (c=299792458 m/s is the exact value of the speed of light) with respect to the Earth. A collision between two comets is observed from the rocket and it is determined that the space time coordinates of the collision are (x',t') = (3.4 x 10¹⁰ m, 190 s).
An event indicates something that occurs at a given location in space and time, in this case the event is the collision between the two comets. We know the space time coordinates of the collision seen from the reference frame of the rocket and we want to find out the space time coordinates in Earth's reference frame.
<em>Lorentz transformation</em>
The Lorentz transformation relates things between two reference frames when one of them is moving with constant velocity with respect to the other. In this case the two reference frames are the Earth and the rocket that is moving with speed v=0,70 c in the x axis.
The Lorentz transformation is




prime coordinates are the ones from the rocket reference frame and unprimed variables are from the Earth's reference frame. Since we want position x and time t in the Earth's frame we need the inverse Lorentz transformation. This can be obtained by replacing v by -v and swapping primed an unprimed variables in the first set of equations




First we calculate the expression in the denominator


then we calculate t




finally we get that

then we calculate x






finally we get that
