Answer:
Velocity is the displacement (change In position of an an object it is similar to distance ) divided by the time taken. SI unit m/s (metre per second)
In that formula for Energy, 'F' is the frequency of the photon.
But <u>Frequency = (speed)/(wavelength)</u>, so we can write the
Energy formula as
E = h c / (wavelength) .
So the energy, in joules, of a photon with that wavelength, is . . .
E = (6.6 x 10⁻³⁴) x (3 x10⁸) / (that wavelength)
= <em>(1.989 x 10⁻²⁵) / (that wavelength, in meters) .</em>
The total work done of 0.018 joules is needed to move the charges apart and double the distance between them.
We have two electric charges q(A) = 1μc and q(B) = -2μc kept at a distance 0.5 meter apart.
We have to calculate much work is needed to move the charges apart and double the distance between them.
<h3>What s the formula to calculate the Potential Energy of a system of two charges (say 'q' and 'Q') separated by a distance 'r' ?</h3>
The potential energy of the system of two charges separated by a distance is given by -

In order to solve this question, it is important to remember the work - energy theorem which states -
"The change in the energy of the body is equal to work done on it"
Hence, using this work -energy theorem in the question given to us we get -

In our case -

W = 0.018 joules
Hence, the total work done should be 0.018 joules.
To solve more question on potential energy, visit the link below -
brainly.com/question/15014856
#SPJ4
Answer:
35.7 mA
Explanation:
The magnetic field inside a solenoid is given by:
(1)
where
is the vacuum permeability
I is the current
n is the number of turns per unit length
Since we have
N = 870 turns
L = 0.390 (length of the solenoid)
we can calculate n

And now we can re-arrange eq.(1) to find the current, I:
