Answer: 12.78ml
Explanation:
Given that:
Volume of KOH Vb = ?
Concentration of KOH Cb = 0.149 m
Volume of HBr Va = 17.0 ml
Concentration of HBr Ca = 0.112 m
The equation is as follows
HBr(aq) + KOH(aq) --> KBr(aq) + H2O(l)
and the mole ratio of HBr to KOH is 1:1 (Na, Number of moles of HBr is 1; while Nb, number of moles of KOH is 1)
Then, to get the volume of a 0.149 m potassium hydroxide solution Vb, apply the formula (Ca x Va)/(Cb x Vb) = Na/Nb
(0.112 x 17.0)/(0.149 x Vb) = 1/1
(1.904)/(0.149Vb) = 1/1
cross multiply
1.904 x 1 = 0.149Vb x 1
1.904 = 0.149Vb
divide both sides by 0.149
1.904/0.149 = 0.149Vb/0.149
12.78ml = Vb
Thus, 12.78 ml of potassium hydroxide solution is required.
Acceleration is the rate at which an object changes its speed. When a raindrop is falling down from the clouds due to gravity, the veloicty is pretty much fast, however air resistance comes in action and slows the droplet down... it gives it a constant speed until it hits the ground
Answer:
Molar absorptivity or molar extinction co-effecient = 2120.14 cm⁻¹M⁻¹
Explanation:
First convert Concentration from ppm inM or mol/l
⇒ Molar mass of KMnO₄ = 158.03 g
⇒ 4.48 ppm = 4.48 mg/l = 4.48 x 10⁻³ g/l
⇒ Molarity =
= 2.83 x 10⁻⁵ molar
Absorbance (A) = - log(T) ( T = % transmittance)
= - log(0.859)
= 0.06
According to Lambert Beer's law
ε = 
or, ε = 
or, ε = 2120.14 cm⁻¹M⁻¹
Where
ε = Molar absorptivity
A = absorbance
C = Molar concentration of KMnO₄ solution
l = length
Answer:
1 temperature 2 weather 3 the stratosphere 4 decreases 5 increases
Explanation:
20 grams is probably the mass