The answer is A because it’s how you calculate the mass
atoms are made of 3 types of subatomic particles; electrons, protons and neutrons
atomic number is the number of protons. atomic number is characteristic for the element. In ground state atoms, the number of electrons and protons are the same.
the electronic configuration of Ca in the ground state is
Ca - 1s² 2s² 2p⁶ 3s² 3p⁶ 4s²
when Ca loses its 2 valence electrons, it becomes positively charged and the electronic configuration becomes
Ca - 1s² 2s² 2p⁶ 3s² 3p⁶
number of electrons in Ca²⁺ is 18
the atom in the ground state would have the same number of electrons and protons. Therefore number of protons are 18. then the atomic number of the element is 18
the atom having an atomic number of 18 is Ar.
the answer is 1) Ar
Answer:
C₂Cl₄
Explanation:
To know if free rotation around a bond in a compound is possible, we need to see the structure of the compound (picture in attachment).
In single bonds, which are formed by σ bonds, the atoms are not fixed in a single position, and free rotation is permitted.
Double and triple bonds are formed by a σ bond and one or two π bonds, respectively. These bonds do not allow rotation, since it is not possible to twist the ends without breaking the π bond.
The chloroethylene (C₂Cl₄) has two carbons with an sp2-sp2 hybridization, they are bonded together by a double bond. <u>Free rotation on this bond is not possible, because six atoms, including the carbon atoms, doubly bonded and the four chlorine atoms bonded to them, must be on the same plane. </u>
Answer:
B. Particles of matter have spaces between them.
Explanation:
The particle nature model of matter is an model used to explain the properties and nature of matter. The statements of the particle nature model of matter are as follows :
1. Matter is made of small particles of atoms or molecules.
2. The particles of matter have space between them. The spaces between the particles are least in solids as they are closely packed together but are greatest in gases whose particles are far apart from each other.
3. The particles of matter are in constant motion at all times. Solids particles are not free to move due to strong molecular forces between the particles, but are constantly vibrating in their mean positions. Liquid particles free to move due to lesser molecular forces while gas molecules which have negligible intermolecular forces have the greatest ability to move.
4. The particles of matter are attracted to each other by intermolecular forces. These forces are greatest in solids and least in gases.
The correct option is B.