Answer:
Berries is the correct answer because it is the produce in your pyramid and as each living thing is devoured by another there is less energy. For instance the berry has the most energy because it’s energy has just come from the sun. But then an insect eats it and consumes most of its energy but some energy is released into the atmosphere. Then a rodent eats the bug and consumes its energy but yet again some energy is released into the atmosphere. So each time there is less and less energy. Does that help any?
Explanation:
it’s energy has just come from the sun. But then an insect eats it and consumes most of its energy but some energy is released into the atmosphere.
Answer:
When like charges come together, they repel each other. For instance, when the north and south poles of a magnet come together, they push each other apart. The like poles in the magnet repel each other and unlike poles attract each other much. The same reaction occurs in like and unlike charges. Also, the repulsion acts along the line between the two charges.
Answer:
The kinetic energy K of the moving charge is K = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd
Explanation:
The potential energy due to two charges q₁ and q₂ at a distance d from each other is given by U = kq₁q₂/r.
Now, for the two charges q₁ = q₂ = Q separated by a distance d, the initial potential energy is U₁ = kQ²/d. The initial kinetic energy of the system K₁ = 0 since there is no motion of the charges initially. When the moving charge is at a distance of r = 3d, the potential energy of the system is U₂ = kQ²/3d and the kinetic energy is K₂.
From the law of conservation of energy, U₁ + K₁ = U₂ + K₂
So, kQ²/d + 0 = kQ²/3d + K
K₂ = kQ²/d - kQ²/3d = 2kQ²/3d
So, the kinetic energy K₂ of the moving charge is K₂ = 2kQ²/3d = 2Q²/(4πε)3d = Q²/6πεd