1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uysha [10]
3 years ago
15

Find the time taken by body whose rate and distance is 6 miles per hour and 2 miles respectively?

Physics
2 answers:
Yuliya22 [10]3 years ago
8 0
12= miles per hour hope this helps
xxTIMURxx [149]3 years ago
7 0

Answer:

12 miles per hour

Explanation:

time is equal to speed times distance

You might be interested in
The only force acting on a 3.0 kg canister that is moving in an xy plane has a magnitude of 5.0 N. The canister initially has a
bekas [8.4K]

Answer:

The work done on the canister by the 5.0 N force during this time is

54.06 Joules.

Explanation:

Let the initial kinetic energy of the canister be

KE₁ = \frac{1}{2} mv_1^{2} = \frac{1}{2} *3*3.6^{2} = 19.44 J in the x direction

Let the the final kinetic energy of the canister be

KE₂ = \frac{1}{2} mv_2^{2} = \frac{1}{2} *3*7.0^{2} = 73.5 J in the y direction

Therefore from the Newton's first law of motion, the effect of the force is the change of momentum and the difference in energy between the initial and the final

= 73.5 J - 19.44 J = 54.06 J

3 0
3 years ago
Read 2 more answers
During energy transformation, all energy systems: are
Tom [10]

B: Energy lose

i say this because in order to change they lose energy.



3 0
3 years ago
Read 2 more answers
Help
photoshop1234 [79]

Answer:

It conserves both energy and momentum in the collision at the same time. By design, when the balls collide the strings that hold them up are vertical (assuming balls are only swung from one side).

Explanation:

Hope This Helps!!

7 0
3 years ago
A mass resting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. It ta
Tomtit [17]

Answer:

(a) 185 N/m

(b) 3.083 kg

Explanation:

(a)

Using,

E = 1/2ke²....................... Equation 1

Where E = work done to compress the spring, k = spring constant of the spring, e = compression of the spring.

make k the subject of the equation

k = 2E/e²............... Equation 2

Given: E = 3.7 J, e = 0.20 m

Substitute into equation 2

k = 2(3.7)/0.2²

k = 185 N/m.

(b)

Using,

F = ma.............. Equation 2

Where F = force applied to the spring, m = mass attached to the spring, a = acceleration of the spring.

But from hook's law,

F = ke................. Equation 3

substitute equation 3 into equation 2

ke = ma

make m the subject of the equation

m = ke/a................ Equation 4

Given: k = 185 N/m, e = 0.2 m, a = 12 m/s²

Substitute into equation 4

m = 185(0.2)/12

m = 3.083 kg

3 0
3 years ago
Read 2 more answers
(a) How many fringes appear between the first diffraction-envelope minima to either side of the central maximum in a double-slit
Ainat [17]

Answer:

a

The number of fringe is  z  = 3 fringes

b

The  ratio is I = 0.2545I_o

Explanation:

a

 From the question we are told that

        The wavelength is  \lambda = 600 nm

        The distance between the slit is  d = 0.117mm = 0.117 *10^{-3} m

        The width of the slit is  a = 35.7 \mu m = 35.7 *10^{-6}m

let  z be the number of fringes that appear between the first diffraction-envelope minima to either side of the central maximum in a double-slit pattern is  and this mathematically represented as

             z = \frac{d}{a}

Substituting values

             z = \frac{0.117*10^{-3}}{35.7 *10^{-6}}  

             z  = 3 fringes

b

   From the question  we are told that the order  of the bright fringe is  n = 3

   Generally the intensity of  a pattern  is mathematically represented as

                 I = I_o cos^2 [\frac{\pi d sin \theta}{\lambda} ][\frac{sin (\pi a sin \frac{\theta}{\lambda } )}{\pi a sin \frac{\theta}{\lambda} } ]

Where I_o is the intensity  of the  central fringe

 And  Generally  sin \theta = \frac{n \lambda }{d}

               I = I_o co^2 [ \frac{\pi (\frac{n \lambda}{d} )}{\lambda} ] [\frac{\frac{sin (\pi a (\frac{n \lambda}{d} ))}{\lambda} }{\frac{\pi a (\frac{n \lambda}{d} )}{\lambda} } ]

               I = I_o cos^2 (n \pi)[\frac{\frac{sin(\pi a (\frac{n \lambda}{d} ))}{\lambda} )}{ \frac{ \pi a (\frac{n \lambda }{d} )}{\lambda} } ]

               I = I_o cos^2 (3 \pi) [\frac{sin (\frac{3 \pi }{6} )}{\frac{3 \pi}{6} } ]

                I = I_o (1)(0.2545)

                  I = 0.2545I_o

6 0
4 years ago
Other questions:
  • A 675-pound trailer is sitting on an exit ramp inclined at 40o on Highway 35. How much vertical force is required to keep the tr
    10·1 answer
  • Explain in your own words the interaction between the electric and magnetic fields that make up a light wave.
    6·1 answer
  • What is the purpose of an experiment design?
    9·1 answer
  • A basketball star exerts a force of 3225 n (average value) upon the gym floor in order to accelerate his 76.5-kg body upward. de
    10·1 answer
  • Doctor prescribed drug which is 500mg for patient change this unit into gram
    6·1 answer
  • Which statement about electromagnet is true
    6·2 answers
  • The combustion of ethanol, C2H5OH(l), in oxygen to form carbon dioxide gas and water vapor is shown by which balanced chemical e
    15·2 answers
  • All fungi are
    9·2 answers
  • Mester Exam 1 11 of 35
    7·1 answer
  • 2. (1) A piece of rubber is 50 cm long when a weight of
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!