Answer:
I already told ya
Explanation:
i got brainly so i could learn
Answers:
B.) 
C.) 
Explanation:
The image attached shows the way the force
is acting on the block. Now, if we draw a free body diagram of the situation and write the equations for the Net Force in X and Y, we will have the following:
Net Force in X:
(1)
Where:
is the Normal force
is the magnitude of the force exerted on the block
is the angle
Net Force in Y:
(2)
Where:
is the Friction force (it is expresed with the
sign because this force may be up or down, we cannot know because the block is at rest)
is the gravity force
Rewrittin (1):
(3) This is according to option B
Rewritting (2):
(3) This is according to option C
Answer:
3.4 mT
Explanation:
L = 0.53 m
i = 7.5 A
Theta = 19 degree
F = 4.4 × 10^-3 N
Let B be the strength of magnetic field.
Force on a current carrying conductor placed in a magnetic field.
F = i × L × B × Sin theta
4.4 × 10^-3 = 7.5 × 0.53 × B × Sin 19
B = 3.4 × 10^-3 Tesla
B = 3.4 mT
Answer:
the answer is The pneumatic mechanical device can only be used as a de-icing device.
Explanation:
An ice protection system prevents the formation of ice, or enables the aircraft to shed the ice before it can grow to a dangerous thickness. Ice protection systems are designed to keep atmospheric ice from accumulating on aircraft surfaces such as wings, propellers and engine intakes.
The pneumatic mechanical device is the Pneumatic deicing boots which was invented by the Goodrich Corporation in 1923. The pneumatic boot is usually made of layers of rubber, with one or more air chambers between the layers.
Any design which utilizes either a mechanical means of breaking the bond of ice to the surface, or which operates on a periodic cycle, is necessarily a de-ice system.
Answer:
741 J/kg°C
Explanation:
Given that
Initial temperature of glass, T(g) = 72° C
Specific heat capacity of glass, c(g) = 840 J/kg°C
Temperature of liquid, T(l)= 40° C
Final temperature, T(2) = 57° C
Specific heat capacity of the liquid, c(l) = ?
Using the relation
Heat gained by the liquid = Heat lost by the glass
m(l).C(l).ΔT(l) = m(g).C(g).ΔT(g)
Since their mass are the same, then
C(l)ΔT(l) = C(g)ΔT(g)
C(l) = C(g)ΔT(g) / ΔT(l)
C(l) = 840 * (72 - 57) / (57 - 40)
C(l) = 12600 / 17
C(l) = 741 J/kg°C