The speed of sound at sea level is 340.29 m/s (meters per seconds).
Answer:
t_total = 6.99 s
Explanation:
It asks us how long it takes to hear the sound, for this we must look for the time (t₁) it takes for the sound to reach the microphone, the time it takes for the video signal (t₂) to reach the television and the time (₃) it takes for the TV sound to reach us, so the total delay time is
t_total = t₁ + t₂ + t₂
we look for t1, it indicates that the distance x = 22m
v = x / t
t = x / v
t₁ = 22/343
t₁ = 6.41 10-2 s
time t₂
t₂ = 4500 103/3 108
t₂ = 1.5 10-5 s
time t₃
t₃ = 2/343
t₃ = 5.83 10⁻³
Total time is
t_total = t₁ + t₂ + t₃
t_total = 6.41 10⁻² + 1.5 10⁻⁵ + 0.583 10⁻²
t_total = 6.99 s
Answer:A student shoots a spitball with a perfectly horizontal velocity of 9.7 m/s from a height of 1.8 meters. How long will it take for the spitball to hit the ground?
(ignore air resistance) (include units and correct number of significant figures)
Explanation:La respuesta es porque esa es la respuesta, la respuesta al número es 9.7 1.8 Divide =53.888
Answer:
Light of a shorter wavelength should be used.
Explanation:
This is studied in the phenomenon called photoelectric effect, in which light is able to release electrons from a metal, said electrons are called photoelectrons .
The experiments that have been carried out show that <u>increasing or decreasing the intensity of the light will not cause the photoelectrons to be emitted</u>, what will cause the photoelectrons to be emitted is to increase the frequency of the incident light.
And a higher frequency corresponds to a shorter wavelength according to the equation:

(where
is frequency,
the speed of light, and
the wavelength)
So the answer is that the wavelength of the light must be shortened to cause the emission of electrones.
Answer:
F = 6.27 x 10 ¹⁹ N
Explanation:
Given
m₁ = 92 kg, m₂ = 46 kg, % = 0.04% N = 6.022 x 10²³ Z = 18, e = 1.6 x 10 ⁻¹⁹ C, M = 0.018 kg/mol
q₁ = % * [m * N * A * e / M ]
q₁ = 0.0004 * [ ( 92 kg * 6.022 x 10²³ * 18 * 1.6 x 10 ⁻¹⁹ ) / (0.018 kg/mol ) ]
q₁ = 3.54 x 10⁶ C
q₂ = 0.0004 * [ ( 46 kg * 6.022 x 10²³ * 18 * 1.6 x 10 ⁻¹⁹ ) / (0.018 kg/mol ) ]
q₂ = 1.773 x 10⁶ C
Now to determine the electrostatic force con use the equation
F = K * q₁ * q₂ / d²
K = 8.99 x 10 ⁹
F = 8.99 x 10 ⁹ * 3.54 x 10⁶ C * 1.773 x 10⁶ C / (30m)²
F = 6.27 x 10 ¹⁹ N