I think its c I really don't take physics but I try to help.
The force require to keep grouper submerged is 8.207N.
According to Archimedes principle buoyant force of any object must equal to weight of fluid it displaced.
The expression for the force exerted to stay submerged in salt water is
F = F(b) - w(fish)
where F(b) = buoyant force
w(fish) = weight
now substitute w(b) for F(b)
→ F = Vρg - w(fish)
where V = volume of sea water
ρ = density of sea water
Now by Archimedes principle V = m(fish) / ρ(fish)
→ F = (m(fish) / ρ (fish) ) ρg - m(fish)g
F = (85 kg/1015 kg-m^-3) (1.025× 10³ kg-m^-3) (9.8 m/s^2)
- (85kg) × 9.8 m/s^2
F = 841.207N - 833N
F = 8.207 N
Hence, the force require to keep grouper submerged is 8.207N.
Learn more about Archimedes Principle here:
brainly.com/question/15076878
#SPJ4
An example would be gravity
Answer
given,
mass of jogger = 67 kg
speed in east direction = 2.3 m/s
mass of jogger 2 = 70 Kg
speed = 1.3 m/s in 61 ° north of east.
jogger one

now
P = P₁ + P₂
magnitude




the angle is
north of east