Answer:
option C
Explanation:
given,
Force by the engine on plane in West direction = 350 N
Frictional force on the runway = 100 N in east
force exerted by the wind = 100 N in east
net force and direction = ?
consider west to be positive and east be negative.
when airplane will be moving there will be frictional as well as wind resistance will be acting in opposite direction of airplane
Net force = 350 N - 100 N - 100 N
= 150 N
as our answer comes out to be positive so the airplane will be moving in West
hence, the correct answer is option C
The radius of the prop blade of an airplane is determined as 4.25 m.
<h3>
Radius of the prop blade</h3>
The radius of the prop blade of an airplane is calculated as follows;
a = v²/r
where;
- v is the linear speed
- r is the radius of the prop blade
- a is the centripetal acceleration
r = v²/a
r = (875²)/(180,000)
r = 4.25 m
Thus, the radius of the prop blade of an airplane is determined as 4.25 m.
Learn more about centripetal acceleration here: brainly.com/question/79801
#SPJ1
Answer:
radiation is the correct answer
Answer: v = 0.6 m/s
Explanation: <u>Momentum</u> <u>Conservation</u> <u>Principle</u> states that for a collision between two objects in an isolated system, the total momentum of the objects before the collision is equal to the total momentum of the objects after the collision.
Momentum is calculated as Q = m.v
For the piñata problem:


Before the collision, the piñata is not moving, so
.
After the collision, the stick stops, so
.
Rearraging, we have:


Substituting:

0.6
Immediately after being cracked by the stick, the piñata has a swing speed of 0.6 m/s.