The correct answer is
<span>B. if Earth rotated on an axis that was not tilted with respect to Earth's orbit
In fact, the fact that Earth's axis is tilted is the reason why the durations of day and night are different in every part of the Earth. If the axis was not tilted, we would have exactly 12 hours of day and night in every point of the Earth, for the whole year.</span>
Answer:
Speed - scalar
Velocity - vector
Displacement - vector
Distance - scalar
Measurement - scalar
Measurement and direction - vector
60 m north - vector
100 m west - vector
200 m/s - scalar.
<h2>
Hello!</h2>
The answer is:
The first option, the walker traveled 360m more than the actual distance between the start and the end points.
Why?
Since each block is 180 m long, we need to calculate the vertical and the horizontal distance, in order to calculate how farther did the travel walk between the start and the end points (displacement).
So, calculating we have:
Traveler:
Actual distance between the start and the end point (displacement):
Now, to calculate how much farter did the traveler walk, we need to use the following equation:
Therefore, we have that distance differnce between the distance covered by the walker and the actual distance is 360m.
Hence, we have that the walker traveled 360m more than the actual distance between the start point and the end point.
Have a nice day!
The velocity of the ball when it reaches the ground is equal to B. 68.6 m/s. This value was obtained from the formula Vf = Vi + at. Vf is the final velocity. Vi is the initial velocity. The acceleration is "a", while the time of travel is "t". The solution is:
<span>Vf = Vi + at
</span>Vf = 0 + (-9.8 m/s^2) (7 s)
Vf = -68.6 m/s
The negative sign denotes the direction of the ball.
The answer to that question is c. tamod