Answer:
401135 kJ
Explanation:
From the balanced quation,
(q/n) = CΔE
Molar heat of combustion = 7.85kJk × (303.81-298.70)k
= 7.85kj × 5.11
= 40.1135kj
Hey there !
<span>Convert Joule to KJ :
</span>
1 j ---------------- 0.001 kj
53.69 j ----------- Kj
Kj = 53.69 * 0.001
=> 0.05369 Kj
T = ΔH / <span>ΔS
T = 49.09 / 0.05369
T = 914.32ºC</span>
The answer is 1/16.
Half-life is the time required for the amount of a sample to half its value.
To calculate this, we will use the following formulas:
1.

,
where:
<span>n - a number of half-lives
</span>x - a remained fraction of a sample
2.

where:
<span>

- half-life
</span>t - <span>total time elapsed
</span><span>n - a number of half-lives
</span>
So, we know:
t = 10 min
<span>

= 2.5 min
We need:
n = ?
x = ?
</span>
We could first use the second equation to calculate n:
<span>If:

,
</span>Then:

⇒

⇒

<span>
</span>
Now we can use the first equation to calculate the remained fraction of the sample.
<span>

</span>⇒

<span>⇒

</span>
The empirical formula for this vitamin : C₃H₄O₃
<h3>Further explanation
</h3>
The empirical formula is the smallest comparison of atoms of compound =mole ratio of the components
The principle of determining empirical formula
- Determine the mass ratio of the constituent elements of the compound.
- Determine the mole ratio by dividing the percentage by the atomic mass
Mass of C in CO₂ :(MW C = 12 g/mol, CO₂=44 g/mol)

Mass of H in H₂O :(MW H = 1 g/mol, H₂O = 18 g/mol)

Mass O = Mass sample - (mass C + mass H) :

mol ratio C : H : O =

Answer:
(c) by increasing it's mass