Answer:
- Waves with higher amplitude transfer HIGHER energy.
- Waves with higher frequency transfer HIGHER energy.
Answer:
(a) T = 2987.6 k
(b) T = 19986.2 k
Explanation:
The temperature of a star in terms of peak wavelength can be given by Wein's Displacement Law, which is as follows:

where,
T = Radiated surface temperature
= peak wavelength
(a)
here,
= 970 nm = 9.7 x 10⁻⁷ m
Therefore,

<u>T = 2987.6 k</u>
(b)
here,
= 145 nm = 1.45 x 10⁻⁷ m
Therefore,

<u>T = 19986.2 k</u>
vf ^2 = kx^2/m = 56(0.75)^2 / 2.5 = 12.6
Therefore, v= 3.5 m/s.
Heat is a temperature and temperature has many factors such and cold, warm, and hot.