Answer:
The magnitude of the maximum possible torque exerted on the coil is 5.73 x 10⁻³ Nm
Explanation:
Given;
number of turns of the circular coil, N = 49.5 turns
radius of the coil, r = 5.10 cm = 0.051 m
magnitude of the magnetic field, B = 0.535 T
current in the coil, I = 26.5 mA = 0.0265 A
The magnitude of the maximum possible torque exerted on the coil is calculated as;
τ = NIAB
where;
A is the area of the coil
A = πr² = π(0.051)² = 0.00817 m²
Substitute the given values and solve for the maximum torque
τ = (49.5) x (0.0265) x (0.00817) x (0.535)
τ = 0.00573 Nm
τ = 5.73 x 10⁻³ Nm
Explanation:
to determine if important scientific results are repeatable
Answer:
k = 5.05 N/m
Explanation:
In order to calculate the spring mass of the system, you use the following formula:
(1)
T: period of oscillation of the system
m: mass of the air-track glider = 200g = 0.200 kg
k: spring constant = ?
You first calculate the period of oscillation:

Next, you solve the equation (1) for k, and then you replace the values of the other parmateres:

The spring constant of the spring is 5.05 N/m
Answer:
The answer is A and C.
Explanation:
Only two factors are relevant when dealing with the gravitational force between two objects - their mass and their distance apart from one another. Gravity's force is proportional to the product of the masses of the two objects and is inversely proportional to the square of the distance between them.