Answer:
13 inches
Step-by-step explanation:
To find the greatest number of inches possible in the length of each piece, we need to find the greatest common divisor of 39, 52 and 65.
So, the divisors of 39 are: 1, 3 and 13
The divisors of 52 are: 1, 2, 4, 13 and 26
The divisors of 65 are: 1, 5 and 13
Therefore, the common divisors are 1 and 13. Finally the greatest common divisor is 13. It means that the greatest number of inches possible in the length of each piece is 13 inches.
Let

be the number of rides Chandler takes in a month. Then the cost with the MetroCard is still $81, but the cost without the MetroCard is

. So we can set up an equation representing what we want: "The cost with a MetroCard of r rides in a month is less than the cost without a MetroCard." In equations,

Thus, at a minimum, Chandler must take 41 rides for his MetroCard to be cheaper than not having it.
Answer:
2 1/9 yards will equal to 76 inches.
Answer:
1. Sine θ = 1/3
2. Cos θ = 2√2 / 3
3. Tan θ = √2 / 4
4. Cosec θ = 3
5. Sec θ = 3√2 / 4
6. Cot θ = 2√2
Step-by-step explanation:
We'll begin by determining the adjacent. This can be obtained as follow:
Hypothenus (Hypo) = 9
Opposite (Opp) = 3
Adjacent (Adj) =?
Hypo² = Adj² + Opp²
9² = Adj² + 3²
81 = Adj² + 9
81 – 9 = Adj²
72 = Adj²
Take the square root of both side
Adj = √72
Adj = 6√2
Finally, we shall determine six trigonometric functions of the angle θ. This Can be obtained as follow:
1. Determination of Sine θ
Hypothenus = 9
Opposite = 3
Sine θ =?
Sine θ = Opposite / Hypothenus
Sine θ = 3/9
Sine θ = 1/3
2. Determination of Cos θ
Adjacent = 6√2
Hypothenus = 9
Cos θ =?
Cos θ = Adjacent / Hypothenus
Cos θ = 6√2 / 9
Cos θ = 2√2 / 3
3. Determination of Tan θ
Opposite = 3
Adjacent = 6√2
Tan θ =?
Tan θ = Opposite / Adjacent
Tan θ = 3 / 6√2
Tan θ = 1 / 2√2
Rationalise
(1 / 2√2) × (2√2 /2√2)
= 2√2 / 4×2
Tan θ = √2 / 4
4. Determination of Cosec θ
Sine θ = 1/3
Cosec θ =?
Cosec θ = 1 / Sine θ
Cosec θ = 1 ÷ 1/3
Cosec θ = 1 × 3/1
Cosec θ = 3
5. Determination of sec θ
Cos θ = 2√2 / 3
Sec θ =?
Sec θ = 1 / Cos θ
Sec θ = 1 ÷ 2√2 / 3
Sec θ = 1 × 3 / 2√2
Sec θ = 3 / 2√2
Rationalise
= (3 / 2√2) × (2√2 / 2√2)
= 3 × 2√2 / 4×2
Sec θ = 3√2 / 4
6. Determination of Cot θ
Tan θ = √2 / 4
Cot θ =?
Cot θ = 1 / Tan θ
Cot θ = 1 ÷ √2 / 4
Cot θ = 1 × 4 / √2
Cot θ = 4 / √2
Rationalise
= (4 / √2) × (√2 / √2)
= 4√2 / 2
Cot θ = 2√2
It’s A .
Explanation : an app I would use to help on math would be Photomath ! It would help out on math problems by taking a picture of the problem !! I hope this helped :)