Answer:
ωf = 0.16 rad/s
Explanation:
Moment of inertia of the child = mr² = 20(1.6²) = 51.2 kg•m²
Moment of Inertia of the MGR = ½mr² = ½(180)1.6² = 230.4 kg•m²
(ASSUMING it is a uniform disk)
Initial angular momentum of the child = Iω = I(v/r) = 51.2(1.4/1.6) = 44.8 kg•m²/s
Conservation of angular momentum
44.8 = (51.2 + 230.4)ωf
ωf = 0.15909090...
Answer:
Option C) 2,090 J/(mol K)
Explanation:
Data:
Volume in the beaker = 429 ml
temperature = 20° C
Density = 789 kg/m³
Equilibrium reading = 429
volume change = 29 ml
= 0.029 L
Energy change = mcΔT
U + PΔV
Light travels in waves AND in bundles called "photons".
It's hard to imagine something that's a wave and also a bundle.
But it turns out that light behaves like both waves and bundles.
If you design an experiment to detect waves, then it responds to light.
And if you design an experiment to detect 'bundles' or particles, then
that one also responds to light.
It is called the CMBR, which stands for cosmic microwave background radiation. It was discovered by Arno Penzias and Robert Wilson in 1964.
The moon is 230,100 miles from planet earth.