Answer:
Explanation:
a) I = ½mR² = ½(19)(0.15²) = 0.21375 kg•m²
b) τ = Fnet(r) = (25 - 12)(0.15) = 1.95 N•m
c) CCW
d) a = τ/I = 1.95 / 0.21375 = 9.12280701... = 9.1 rad/s²
e) CCW
Answer: Jupiter's mass
Explanation:
From Kepler's third law:

where T is the orbital period of a satellite, a is the average distance of the satellite from the Planet, M is the mass of the planet, G is the gravitational constant.
If the average distance of one of Jupiter's moons to Jupiter and its orbital period around Jupiter is given then mass of the Jupiter can be found:

Isotope means that a chemical element that has the same number of protons but neutron number differs.
<u>Explanation:</u>
In isotope, the chemical element differs in neutron and nucleon number. Thus, different isotopes of a single component hold the same place in the periodic table.
Within the atom’s nucleus, protons are defined as an atomic number that is significantly equal to electrons in a neutral atom. An isotope of a given element has a different mass number. In general, every atomic number has a specific element, but in isotope, an atom may have a wide range of neutrons.
Given Information:
KEa = 9520 eV
KEb = 7060 eV
Electric potential = Va = -55 V
Electric potential = Vb = +27 V
Required Information:
Charge of the particle = q = ?
Answer:
Charge of the particle = +4.8x10⁻¹⁸ C
Explanation:
From the law of conservation of energy, we have
ΔKE = -qΔV
KEb - KEa = -q(Vb - Va)
-q = KEb - KEa/Vb - Va
-q = 7060 - 9520/27 - (-55)
-q = 7060 - 9520/27 + 55
-q = -2460/82
minus sign cancels out
q = 2460/82
Convert eV into Joules by multiplying it with 1.60x10⁻¹⁹
q = 2460(1.60x10⁻¹⁹)/82
q = +4.8x10⁻¹⁸ C
Answer:
X-rays are commonly produced in X-ray tubes by accelerating electrons through a potential difference (a voltage drop) and directing them onto a target material