Answer:
We only see one side of the moon due to the synchronous rotations and the earth rotation ration is approximately 27 days
Explanation:
Answer:
The final kinetic energy of the Helium nucleus (alpha particle) after been scattered through an angle of 120° is
8.00 x 10-13J
Explanation:
In Rutherford Scattering experiment, the collision of the helium nucleus with the gold nucleus is an ELASTIC COLLISION. This means that the kinetic energy is conserved ( The same before and after the collision).
Thus, the final kinetic energy of the helium nucleus is the same as initial kinetic energy (8.00 x 10^-13Joules)
Although, the kinetic energy is converted to potential energy in Coulomb's law equation.
That is,
1/2(mv^2) = (K* q1q2)/r
Where m is the mass of helium nucleus, v is its colliding velocity, k is electrostatic constant, q1 is the charge on helium nucleus, q2 is the charge on gold nucleus, r is impact parameter
The area of the velocity time graph gives displacement of the body true or false?
The answer this is true.
Answer:
Grow up man, this is completely based on your curriculum, we would need your book to answer, and this has to be done by you.
Answer:
0.3 m
Explanation:
Initially, the package has both gravitational potential energy and kinetic energy. The spring has elastic energy. After the package is brought to rest, all the energy is stored in the spring.
Initial energy = final energy
mgh + ½ mv² + ½ kx₁² = ½ kx₂²
Given:
m = 50 kg
g = 9.8 m/s²
h = 8 sin 20º m
v = 2 m/s
k = 30000 N/m
x₁ = 0.05 m
(50)(9.8)(8 sin 20) + ½ (50)(2)² + ½ (30000)(0.05)² = ½ (30000)x₂²
x₂ ≈ 0.314 m
So the spring is compressed 0.314 m from it's natural length. However, we're asked to find the additional deformation from the original 50mm.
x₂ − x₁
0.314 m − 0.05 m
0.264 m
Rounding to 1 sig-fig, the spring is compressed an additional 0.3 meters.