Answer:
The correct option is;
comparing plant survivorship in areas where hikers stay on the trail with plants where hikers leave the trail
Step-by-step explanation:
The hypothesis that the area formerly covered by known plants which is now bare soil due to trampling in the alpine areas by hikers can be tested by means of comparing the areas where during the cause of their visit, the hikers remain on the trail as they move within the park to other portion of the park where it is known that there are either very few or no hiker remain on the trail. The outcome will determine if the cause of the appearance of bare soil is due to the transit and trampling by hikers.
to find the slope for the first one, use the formula 
(It's the slope formula)
so... 
then plug in... 
this line has a slope of 0
As for the miles problem, to find mph, the miles have to be at 1.
so... 
therefore, he drove 60.5 mph
Answer:
Differentiation will give you the gradient for the tangent at any point, and you use the product rule whenever a function can be thought of as two functions multiplied together.
If
f
(
x
)
=
g
(
x
)
×
h
(
x
)
then
f
'
(
x
)
=
g
'
(
x
)
h
(
x
)
+
g
(
x
)
h
'
(
x
)
so if
y
=
x
×
sin
x
then
d
y
d
x
=
1
×
sin
x
+
x
×
cos
x
=
sin
x
+
x
cos
x
We know that
x
=
π
2
, so the gradient is
m
=
sin
(
π
2
)
+
π
2
cos
(
π
2
)
=
1
+
π
2
×
0
=
1
Therefore, we can say that
y
=
m
x
+
c
y
=
(
1
)
x
+
c
y
=
x
+
c
So all we really need to find now is the value for
c
, the
y
intercept. We do this by working out a point
(
x
,
y
)
on the graph. We are already given that
x
=
π
2
, so
y
=
x
sin
x
=
π
2
sin
(
π
2
)
=
π
2
×
1
=
π
2
∴
(
x
,
y
)
=
(
π
2
,
π
2
)
Now we substitute this into the equation we already have for the tangent,
y
=
x
+
c
,
(
x
,
y
)
=
(
π
2
,
π
2
)
π
2
=
π
2
+
c
c
=
π
2
−
π
2
=
0
∴
y
=
x
+
c
=
x
+
(
0
)
=
x
which means the tangent to the curve
y
=
x
sin
x
at
(
π
2
,
π
2
)
is simply
y
=
x
.
I think he’s because 3/6 is half and 2/3 is half