The alignment of the earth, moon, and sun during a solar eclipse is Sun, Earth, moon.
        
                    
             
        
        
        
Answer:

point mutation, change within a gene in which one base pair in the DNA sequence is altered. Point mutations are frequently the result of mistakes made during DNA replication, although modification of DNA, such as through exposure to X-rays or to ultraviolet radiation, also can induce point mutations
 
        
                    
             
        
        
        
Answer:
a. resolve the branching patterns (evolutionary history) of the Lophotrochozoa 
b. (the same, it is repeated)
Explanation:
Nemertios (ribbon worms) and foronids (horseshoe worms) are closely related groups of lofotrocozoa. Lofotrocozoans, or simply trocozoans (= tribomastic celomados with trocophoric larva) are a group of animals that includes annelids, molluscs, endoprocts, brachiopods and other invertebrates. They represent a crucial superphylum for our understanding of the evolution of bilateral symmetry animals. However, given the inconsistency between molecular and morphological data for these groups, their origins were not entirely clear. In the work linked above, the first records of genomes of the Nemertine worm Notospermus geniculatus and the foronid Phoronis australis are presented, along with transcriptomes along the adult bodies. Our phylogenetic analyzes based on the genome place Nemertinos as the sister group of the taxon that contains Phoronidea and Brachiopoda. It is shown that lofotrocozoans share many families of genes with deuterotomes, suggesting that these two groups retain a common genetic repertoire of bilaterals that do not possess ecdisozoans (arthropods, nematodes) or platizoos (platelets, sydermats). Comparative transcriptomics demonstrates that foronid and brachiopod lofophores are similar not only morphologically, but also at the molecular level. Although the lofophore and vertebrates show very different cephalic structures, the lofophorees express the vertebrate head genes and neuronal marker genes. This finding suggests a common origin of the bilaterial pattern of the head, although different types of head will evolve independently in each lineage. In addition, we recorded innate immunity expansions of lineage-specific and toxin-related genes in both lofotrocozoa and deuterostomes. Together, this study reveals a dual nature of lofotrocozoans, in which the conserved and specific characteristics of the lineage shape their evolution.