Acids have a pH less than 7 (pH < 7)
Bases have a pH more than 7 (pH > 7)
A pH of 7 would be neutral
Hope this helped!
Answer:
Ionic character
A. PF₃ > PBr₃ > PCl₃
B. BF₃ > CF₄ > NF₃
C. TeF₄ > BrF₃ > SeF₄
Explanation:
The most electronegative element is fluorine, followed chlorine, phosphorous nitrogen etc.
- Atoms with high electronegativity tend to form negative ions.
- Ionic compounds formed between elements with high electronegativity difference.
- % ionic character is directly proportional to electronegativity difference.
- According to Pauling Scale E.n for F(4.0), O(3.5), N(3.0), C(2.5), B(2.0), P(2.19), Se(2.55) , Te (2.1), Cl(3.16) and Br(2.96)
- ΔE.N (Electronegativity difference) between( P and F = 4 - 2.19 = 1.81), (P and Br = 2.96 - 2.19 = 0.77) , (P and Cl = 3.16 - 2.96 = 0.2 )
- ΔE.N (Electronegativity difference) between( N and F = 4 - 3 = 1), (B and F = 4 - 2 = 2) , (C and F = 4 - 2.5 = 1.5 )
- ΔE.N (Electronegativity difference) between( Se and F = 4 - 2.55 = 1.45), (F and Te = 4 - 2.1 = 1.9) , (F and Br = 4 - 2.19 = 1.81 )
Answer:
Hi Im an online tutor and i can assist you with all your assignments. We have experts in all fields. check out our website https://toplivewriters.com/
Explanation:
Silver (Ag) is the number of atoms per unit cell for each metal. Silver has a face-centred cubic (FCC) unit cell structure, where there are 8 corner atoms and 6 atoms on the faces, so there are a total of 4 atoms per unit cell.
The identical unit cells are defined in such a way that they take up space without touching one another. A crystal's internal 3D arrangement of atoms, molecules, or ions is known as its lattice. It consists of a large number of unit cells. Every point of the lattice is occupied by one of the three component particles.
Primitive cubic, body-centred cubic (BCC), and face-centred cubic are the three types of unit cells (FCC). The three different sorts of unit cells will be thoroughly covered in this section.
To learn more about the unit cell refer here:
brainly.com/question/13433017
#SPJ4
Sodium, Atomic mass: 22.989769 g
You can see in a periodic table