Answer:
NO3 that is the answer to the question
Answer:
55.9 g KCl.
Explanation:
Hello there!
In this case, according to the definition of molality for the 0.500-molar solution, we need to divide the moles of solute (potassium chloride) over the kilograms of solvent as shown below:

Thus, solving for the moles of solute, we obtain:

Since the density of water is 1 kg/L, we obtain the following moles:

Next, since the molar mass of KCl is 74.5513 g/mol, the mass would be:

Regards!
Answer: has properties similar to other elements in group 18, does not react readily with other elements, is part of the noble gas group
Explanation: I’ve done on edg before
Answer:
Explanation:
a )
energy produced per second = 500 J
Heat produced = 500 x .8 = 400 J per second.
If m be the mass of water evaporated per unit hour
m x latent heat = 400 x 60 x 60
= m x 2.42 x 10⁶ = 1.44 x 10⁶
m = .595 kg per hour
b )
volume of water = 595 mL
bottles = 595 / 750
.8 or 4/5 of bottle. per hour.
The gibbs free energy of the reaction of diamond to graphite is equal to -2.90 kJ/mol. The free energy is negative which means that the reaction is spontaneous. Therefore, the forward reaction is favored. Hope this helps. Have a nice day.