Answer:
90.35 × 10²³ atoms
Solution:
1 molecules of H20 contains 3 atoms,.
And we know that one mole of any molecule contains 6.023 × 10²³ atoms from Avogadro's number,
hence 5 moles of H20 will contain = 5× 6.023 × 10²³ × 3 atoms = 90.35 × 10²³ atoms!
<em><u>Thanks for joining brainly community!</u></em>
I believe it is either A or B
Answer:
C. CH3COOH, Ka = 1.8 E-5
Explanation:
analyzing the pKa of the given acids:
∴ pKa = - Log Ka
A. pKa = - Log (1.0 E-3 ) = 3
B. pKa = - Log (2.9 E-4) = 3.54
C. pKa = - Log (1.8 E-5) = 4.745
D. pKa = - Log (4.0 E-6) = 5.397
E. pKa = - Log (2.3 E-9) = 8.638
We choose the (C) acid since its pKa close to the expected pH.
⇒ For a buffer solution formed from an acid and its respective salt, we have the equation Henderson-Hausselbach (H-H):
- pH = pKa + Log ([CH3COO-]/[CH3COOH])
∴ pH = 4.5
∴ pKa = 4.745
⇒ 4.5 = 4.745 + Log ([CH3COO-]/[CH3COOH])
⇒ - 0.245 = Log ([CH3COO-]/[CH3COOH])
⇒ 0.5692 = [CH3COO-]/[CH3COOH]
∴ Ka = 1.8 E-5 = ([H3O+].[CH3COO-])/[CH3COOH]
⇒ 1.8 E-5 = [H3O+](0.5692)
⇒ [H3O+] = 3.1623 E-5 M
⇒ pH = - Log ( 3.1623 E-5 ) = 4.5
Answer:
The answer is b. The number of collisions of gas particles increases
An increase in the number of gas particles in the container increases the frequency of collisions with the walls and therefore the pressure of the gas. The last postulate of the kinetic molecular theory states that the average kinetic energy of a gas particle depends only on the temperature of the gas.