Complete Question
A uniform electric field of magnitude 144 kV/m is directed upward in a region of space. A uniform magnetic field of magnitude 0.38 T perpendicular to the electric field also exists in this region. A beam of positively charged particles travels into the region. Determine the speed of the particles at which they will not be deflected by the crossed electric and magnetic fields. (Assume the beam of particles travels perpendicularly to both fields.)
Answer:
The velocity is
Explanation:
From the question we are told that
The magnitude of the electric field is 
The magnetic field is 
The force due to the electric field is mathematically represented as

and
The force due to the magnetic field is mathematically represented as

Now given that it is perpendicular , 
=> 
=> 
Now given that it is not deflected it means that

=> 
=> 
substituting values


Answer:
a)
b)
.
Explanation:
Given that
Boyle's law
P V = Constant ,at constant temperature
a)
Given that


We know that for PV=C

Now by putting the values
PV= 50 x 0.106

Where P is in KPa and V is in 
b)
PV= C
Take ln both sides
So 
lnP + lnV =lnC ( C is constant)
By differentiating

So

When P= 50 KPa

It indicates the slope of PV=C curve.
It unit is
.
Or we can say that
.
Solution:
According to the equations for 1-D kinematics. The only change to them is that instead one equation that describes general motion.
So we will have to use the equations twice: once for motion in the x direction and another time for the y direction.
v_f=v_o + at ……..(a)
[where v_f and v_o are final velocity and initial velocity, respectively]
Now ,
Initially, there was y velocity, however gravity began to act on the football, causing it to accelerate.
Applying this value in equation (a)
v_yf = at = -9.81 m/s^s * 1.75 = -17.165 m/s in the y direction
For calculating the magnitude of the equation we have to square root the given value
(16.6i - 17.165y)
\\
\left | V \right |=sqrt{16.6^{2}+17.165^{2}}\\ =
\sqrt{275.56+294.637225}\\=
\sqrt{570.197225}\\=
23.87[/tex]
Answer:
B) R1 = 6 V and R2 = 6V
Explanation:
In series, both resistors will carry the same current.
that current will be I = V/R = 12 / (10 + 10) = 0.6 A
The voltage drop across each resistor is V = IR = 0.6(10) = 6 V