Answer:
1- For the track B. The potential energy is the same for the two cars, but because of the slope of the track, the car B earn kinetic energy faster. The gravitation acceleration of the cars will be g•sinθ, and the angle of the track B will have a bigger value for sinθ
2- The conservation of energy applies because the roller coaster is a closed track. When a car climb the track, it earn GPE, which is given by mgh, when it get down in the track, it transform GPE in KE, which is given in 1/2mv².
3-
Position of car (m) GPE KE GPE + KE
top (30m) 60000 0 60000
bottom (0m) 0 60000 60000
halfway down (15m) 30000 30000 60000
three-quarters way down 15000 45000 60000
Pounds
If you are talking about the unit of measurement for weight is that of force it would be Newtons.
The answer is radiator >.<
It pulls the moon toward earth
Answer:
The Gravitational potential energy at large distances is directly proportional to the masses and inversely proportional to the distance between them. The gravitational potential energy increases as r increases.
Examples of Gravitational Energy
A raised weight.
Water that is behind a dam.
A car that is parked at the top of a hill.
A yoyo before it is released.