Answer:
atoms form bonds by donating, accepting or sharing electrons with other atoms in order to complete their valence shell electrons
hence , C. Bonding gives an atom the same number of protons as a noble gas.
Explanation:
i hope it helped
Answer:
The answer is below
Explanation:
Newton's law of gravity states that the force between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. The law is expressed by the formula:

The masses and distances for this question is in common units, Therefore the result would be in ratios
a) 4 MEarth / 2 MSolar / 3 AU
The force (F) = (4 * 3) / 3² = 4/3
b) 1 MEarth / 1 MSolar / 1 AU
The force (F) = (1 * 1) / 1² = 1
c) 1 MEarth / 2 MSolar / 2 AU
The force (F) = (1 * 2) / 2² = 1/2
Answer:
B. Steam burns the skin worse than hot water because the latent heat of vaporization is released as well.
Explanation:
It is given that both steam and the boiling water when in contact with the skin cools down from 100 to 34 degrees Celsius.
For any substance of mass m, the heat required to change the temperature by
is
(S.I. unit = Joules).
where C, the specific heat capacity is the same and a constant for both the condensed steam and the boiling water.
But, there is a "hidden" energy (heat) released by the steam called latent heat
(given by mL, L = specific latent heat) which allows the phase transition (gas to liquid). While both of them are at the same temperature, their energy (heat) is different, which is why steam causes burns worse than boiling water
Answer:
Explanation:
Ignoring friction, the acceleration will double
F = ma
2F = m(2a)
When light passes from one medium to another, part of it continues on
into the new medium, while the rest of it bounces away from the boundary,
back into the first medium.
The part of the light that continues on into the new medium is <em>transmitted</em>
light. Its forward progress at any point in its journey is <em>transmission</em>.
Its direction usually changes as it crosses the boundary. The bending is <em>
refraction</em>.
The part of the light that bounces away from the boundary and heads back
into the first medium is <em>reflected</em> light. The process of bouncing is <em>reflection</em>.