Answer:
The correct answer is - option D. photosynthesis.
Explanation:
It is shown by the study that most of the atmospheric oxygen comes from the photosynthesis by plants as oxygen is the byproduct of the photosynthesis. Photosynthesis is the process that uses light energy, carbon dioxide, and water to produce food or glucose/sugar and release oxygen as the byproduct.
Many scientists believe that oceanic phytoplankton that releases oxygen by the photosynthesis process makes 80 to 85% of the total oxygen of the atmospheric oxygen.
Answer:
Increasing the concentration of the reagents makes the collision between two molecules of the reagents more likely, thereby increasing the probability that the reaction will occur between these reagents.
As for the relationship between concentration and volume, density also comes into play, a higher volume, lower molarity and also lower concentration.
The pressure when increasing could generate a closer approach between the particles, therefore generating an increase in the reaction speed.
Pressure and volume are related but inversely proportional, therefore if the volume increases the pressure decreases and so on.
the reaction rate increases as the contact surface area increases. This is due to the fact that more solid particles are exposed and can be reached by reactant molecules.
A perfect reaction where the collision is promoted and the reaction speed advances is with the presence of a solvent, with an increase in pressure and a decrease in volume, with an increase in the exposure of the surface, with the presence of a catalyst, with increasing temperature and with increasing entrance
Explanation:
The reaction rate is defined as the amount of substance that is transformed into a certain reaction per unit of volume and time. For example, the oxidation of iron under atmospheric conditions is a slow reaction that can take many years but over time it is oxidized sooner or later by the oxygenation of its surface layer, but the combustion of butane in a fire is a reaction that happens in fractions of seconds, giving rise to an exothermic reaction with products such as CO2 and H2O
Answer:
What is the oxidation half reaction for iron?
The two elements involved, iron and chlorine, each change oxidation state; iron from +2 to +3, chlorine from 0 to -1. There are then effectively two half-reactions occurring. These changes can be represented in formulas by inserting appropriate electrons into each half-reaction: Fe2+ → Fe3+ + e.
Hope this helps..
17 protons 17 electrons 18 neutrons