For this case, the switch is located at point B of the diagram.
Remember that point D is the universal symbol for resistance.
In A what you have is a source of power and in C what you have is a cable.
Therefore, the answer for this case is B.
Answer:
21.28 m
Explanation:
height, h = 71 m
velocity of raft, v = 5.6 m/s
let the time taken by the stone to reach to raft is t.
use second equation of motion for stone

u = 0 m/s, h = 71 m, g = 9.8 m/s^2
71 = 0 + 0.5 x 9.8 x t^2
t = 3.8 s
Horizontal distance traveled by the raft in time t
d = v x t = 5.6 x 3.8 = 21.28 m
Answer:
1470kgm²
Explanation:
The formula for expressing the moment of inertial is expressed as;
I = 1/3mr²
m is the mass of the body
r is the radius
Since there are three rotor blades, the moment of inertia will be;
I = 3(1/3mr²)
I = mr²
Given
m = 120kg
r = 3.50m
Required
Moment of inertia
Substitute the given values and get I
I = 120(3.50)²
I = 120(12.25)
I = 1470kgm²
Hence the moment of inertial of the three rotor blades about the axis of rotation is 1470kgm²
Answer:
B. the stars to come back to the same positions in the sky.
Explanation:
In fact, the solar day is equivalent to more than a rotation, because when the point has turned completely, it is not, as it should, in the same position with respect to the Sun.
The reason for this is that while performing the rotation, the Earth simultaneously moved following its orbit around the Sun.
When the reference point completed its rotation, the Earth already moved almost 2,500,000 km., So that to see the Sun again it will be necessary to turn a little more.
Solar day is more than a rotation. The sidereal or sidereal day, commonly used by astronomers, is also based on the rotation of the Earth; but in this case a distant star is taken as a reference (sidereal comes from the Latin sidus which means "star").