Answer:
Explanation:
Force = mass * acceleration.
Answer:
true! : )
(i underlined the place where the answer is the other information is just as important but if you do not want to read it you do not have to)
Explanation:
Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces. So as two objects are separated from each other, the force of gravitational attraction between them also decreases. the greater the mass, the greater the gravitational pull. <u>gravitational pull decreases with an increase in the distance between two objects.</u> Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces. So as two objects are separated from each other, the force of gravitational attraction between them also decreases.
opaque glass does not allow light to pass through it.
Answer:
ΔE> E_minimo
We see that the field difference between these two flowers is greater than the minimum field, so the bee knows if it has been recently visited, so the answer is if it can detect the difference
Explanation:
For this exercise let's use the electric field expression
E = k q / r²
where k is the Coulomb constant that is equal to 9 109 N m² /C², q the charge and r the distance to the point of interest positive test charge, in this case the distance to the bee
let's calculate the field for each charge
Q = 24 pC = 24 10⁻¹² C
E₁ = 9 10⁹ 24 10⁻¹² / 0.20²
E₁ = 5.4 N / C
Q = 32 pC = 32 10⁻¹² C
E₂ = 9 10⁹ 32 10⁻¹² / 0.2²
E₂ = 7.2 N / C
let's find the difference between these two fields
ΔE = E₂ -E₁
ΔE = 7.2 - 5.4
ΔE = 1.8 N / C
the minimum detection field is
E_minimum = 0.77 N / C
ΔE> E_minimo
We see that the field difference between these two flowers is greater than the minimum field, so the bee knows if it has been recently visited, so the answer is if it can detect the difference
Yes, friction does exist in space. Friction has nothing to do with the earth's atmosphere. It exists everywhere in the universe. <span />