Answer: 0.24g/ml
Explanation:
Given that:
Volume of water displaced = 23.5 ml
Mass of cork = 5.7 g
Density of the cork = ?
Recall that density is obtained by dividing the mass of a substance by the volume of water displaced.
i.e Density = Mass/volume
Density = 5.7g /23.5ml
Density = 0.24g/ml
Thus, the density of the piece of cork is 0.24g/ml
<h2>
Answer: Toward the center of the circle.</h2>
This situation is characteristic of the uniform circular motion , in which the movement of a body describes a circumference of a given radius with constant speed.
However, in this movement the velocity has a constant magnitude, but its direction varies continuously.
Let's say
is the velocity vector, whose direction is perpendicular to the radius
of the trajectory, therefore
the acceleration
is directed toward the center of the circumference.
Answer:at 21.6 min they were separated by 12 km
Explanation:
We can consider the next diagram
B2------15km/h------->Dock
|
|
B1 at 20km/h
|
|
V
So by the time B1 leaves, being B2 traveling at constant 15km/h and getting to the dock one hour later means it was at 15km from the dock, the other boat, B1 is at a distance at a given time, considering constant speed of 20km/h*t going south, where t is in hours, meanwhile from the dock the B2 is at a distance of (15km-15km/h*t), t=0, when it is 8pm.
Then we have a right triangle and the distance from boat B1 to boat B2, can be measured as the square root of (15-15*t)^2 +(20*t)^2. We are looking for a minimum, then we have to find the derivative with respect to t. This is 5*(25*t-9)/(sqrt(25*t^2-18*t+9)), this derivative is zero at t=9/25=0,36 h = 21.6 min, now to be sure it is a minimum we apply the second derivative criteria that states that if the second derivative at the given critical point is positive it means here we have a minimum, and by calculating the second derivative we find it is 720/(25 t^2 - 18 t + 9)^(3/2) that is positive at t=9/25, then we have our answer. And besides replacing the value of t we get the distance is 12 km.